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Summary. The performance of delta function and Hiller-Sucher-Feinberg (HSF) 
operators is compared for calculations of the electronic spin density at the nucleus, 
which determines the observed Fermi contact hyperfine splitting. Calculations are 
performed on the ground states of the first-row open-shell atoms boron through 
fluorine. The wavefunctions include low order spin polarization effects calculated 
through the multiconfigurational self-consistent-field procedure. It is shown that 
while delta function and HSF operators give nearly the same results when essen- 
tially exact numerical grid methods are used, the HSF operator gives a significant 
advantage when contracted Gaussian type basis sets are utilized. 
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Introduction 

Recently, there has been interest in using the Hiller-Sucher-Feinberg (HSF) 
identity [1] for calculation of the electronic spin density in open shell systems 
[2-9].  The usual formulation of this property in terms of a delta function operator 
depends only on the error in the wavefunction at the particular point of interest. 
Unfortunately, for many kinds of approximate wavefunctions this error may be 
large, particularly in the calculation of magnetic hyperfine coupling constants 
where the relevant point is the position of a nucleus. By contrast, the analogous 
HSF operator is global in nature and so distributes the error over all of space. Since 
most methods for determination of approximate wavefunctions are based on 
calculation of the total energy, which is also represented by a global operator, it 
seems possible that the HSF formulation may reduce the spin density error and 
improve its rate of convergence as the wavefunction is systematically improved. 

The observed Fermi contact hyperfine coupling constant for a magnetic nu- 
cleus located at the origin is proportional to q(O)/N, which is the electronic spin 
density at the nucleus q(0) = p,(0) - p~(0) normalized to the number of unpaired 



2 v.A. Rassolov, D. M. Chipman 

electrons N. The spin density can be expressed through the delta function operator 
as an expectation value over the electronic wavefunction ~ as 

electrons 

q~(O)/N=(OI ~ 6(ri)2szil~)/g. (1) 
i 

The works of Hiller et al. [1], Sucher and Drachman [2], and Harriman [3] have 
shown that the delta function operator above may be replaced by a global operator 
as in 

qnSF(o)/N = (OI 
i 

This latter expression utilizing the HSF operator can be considered as a sum of 
three terms. One arises from the L.2/r ~ z ~ , part, where L 2 is the total orbital angular 
momentum operator for the ith electron, and will be abbreviated as the L term. 
The others arise from the ~V/3ri part, where V is the potential energy operator 
appearing in the total nonrelativistic Hamiltonian. The one and two electron 
portions of V then lead to contributions that are abbreviated as the U and V terms, 
respectively. 

When evaluated with an exact eigenfunction of the total Hamiltonian, q~(O)/N 
and qnSV(O)/N give identical results [1-3]. It is also found that these operators give 
identical results in the case of both spin and total electron density for any wave- 
function found through spin-unrestricted Har t ree-Fock [5], or more general 
unrestricted multiconfigurational self-consistent-field (MCSCF) optimization (see 
Appendix I), provided that calculations are done with a complete basis set. Usually, 
certain restrictions are imposed on the MCSCF procedure, such as a requirement 
for the wavefunction to be an eigenfunction of the total spin operator S 2. This 
restriction may cause the spin density values of delta function and HSF operators 
to be different from one another, although the total electron density values remain 
identical (see Appendix I). 

The finite size of the basis set can also be viewed as a restriction on the MCSCF 
procedure. In this case the-use of a global operator in qnSF(O)/N may give an 
improved calculation of both the total electron and spin densities. On the other 
hand, the HSF formulation is more difficult to implement, particularly due to the 
two-electron term. Calculations on real systems are required to determine whether 
or not the HSF formulation carries any advantage in practice. 

The HSF formulation has been tested in several previous spin density studies 
[4-9].  Most of these [5-7]  have utilized the spin-unrestricted Har t ree-Fock 
(UHF) wavefunction. These studies have shown that HSF usually performs better 
than the delta function in that situation. In some cases the improvement is up to an 
order of magnitude, while in other cases there is little or no improvement. One 
calculation on Bell [8] has reported HSF spin density results with correlated 
wavefunctions, but no comparison with delta function results was provided. 

It should also be noted that Challacombe and Cioslowski [10-12] have 
presented several interesting formal and computational results on use of the HSF 
identity for calculation of total electron densities, i.e., p~(r)+ p~(r), at various 
spatial locations r not just limited to the position of the nucleus. Particularly 
interesting is their demonstration that the HSF operator can provide a cusp in the 
density at the nucleus even with the use of Gaussian basis functions that are 
cuspless in the usual delta function formulation [10]. 

We have recently compared [9] delta function and HSF spin densities in the 
[28] ground and [2p] first excited states of the Li atom. The wavefunctions 
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considered were based on spin-restricted open-shell Hartree-Fock (ROHF), aug- 
mented with single-excitation configurations appropriate to describe spin polariza- 
tion (SP) and spin + orbital polarization (SOP) effects. When the wavefunctions 
were determined by highly precise numerical grid methods, it was found that the 
delta function and HSF approaches gave very similar results, with HSF being 
slightly closer to experiment. For approximations to these wavefunction models 
expanded within finite Slater and Gaussian basis sets, the HSF results were 
generally significantly better than those from the delta function. 

These findings have encouraged us to continue a systematic study of use of the 
HSF identity for spin density calculations. In the present work, we report analog- 
ous calculations on the ground states of the remaining open-shell first-row atoms 
boron [2p], carbon [3p], nitrogen [4S], oxygen [3p], and fluorine [2p]. This 
closely parallels our earlier delta function studies [13 15] on these systems. 

Several other groups have recently calculated delta function spin density results 
for these atoms, including Feller and Davidson [16], Bauschlicher et al. [17], 
Carmichael [18], Sundholm and Olsen [19], Engels [20], J6nsson and Fischer 
[21], Kong et al. [22], and Perera et al. [23]. Those works have generally focused 
on the higher-order effects of dynamical electron correlation, which are indeed 
required to attain truly quantitative accuracy. Our motivation is different, in that 
the ultimate goal is to develop efficient computational methods that can be applied 
to study spin densities in large polyatomic free radicals. There is evidence [24, 25] 
that useful semiquantitative results can be obtained by including just the most 
important low-order effects in relatively simple uncorrelated wavefunctions such as 
are considered here. In this connection, it is also desired to develop small to 
moderately large Gaussian basis sets appropriate for spin density calculations. 

The various ROHF, SP and SOP wavefunction models considered are dis- 
cussed in the next section. Then the inherent accuracy of each, as compared to 
experiment, is examined by first carrying out highly precise determinations of the 
wavefunctions with numerical grid methods. These correspond to the limiting 
results that could be obtained from essentially complete basis sets. In that context, 
they are very useful as benchmarks for the subsequent studies that utilize Gaussian 
basis sets. Finally, the concluding section provides a summary and discussion of the 
important findings from this work. 

Wavefunction models 

The ROHF configuration for each of the ground-state first-row atoms considered 
in this work can be expressed as 

@ROHF = ils2 2s 2 2p"l, (3) 

where the n = 1 5 electrons in the open 2p shell are coupled to the same term as 
the overall state symmetry. LS coupling is assumed throughout this work, and the 
requirement that all wavefunctions be proper eigenfunctions of the S 2, Sz, L z, and 
Lz angular momentum operators necessitates that many of the configurations 
discussed below be fixed linear combinations of several Slater determinants. The 
ls, 2s, and 2p orbitals are optimized by a SCF procedure [26]. 

In the following, @o will denote a wavefunction having the same generic form as 
~pROHV but differing by virtue of having the orbitals optimized in a more general 
multiconfiguration (MC) SCF that includes the effects of other configurations. 
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Explicit expressions for the remaining configurations have been given previously 
[151 and discussed at some length, so they will only be briefly described below. 

Spin polarization effects can be introduced through wavefunctions of the form 

0 sv = Co0o + c101 + c202( + c303) (4) 

that augment the dominant configuration 0o with either two or three singly excited 
configurations 01, 02, and possibly 03. Due to BriUouin's theorem [27], the only 
two s -~ s excitations that need be considered are the ls ~ s** and 2s ~ s* promo- 
tions having triplet intermediate spin coupling of the unpaired s electrons, i.e., 

0x = ]ls s** [3S] 2s 2 2p" [W]], (5) 

02 = ] ls 22S S* [3S] 2p" [W]I, (6) 

with consequent intermediate recoupling of the 2p electrons to produce the correct 
overall state symmetry, i.e., [W] = [2p] for B and F, [W] = [3p] for C and O, and 
[W] = [4S] for N. Note that for simplicity of notation we omit the trivial [IS] 
coupling of any complete shell. Those shells of electrons having the particular 
intermediate couplings indicated are, of course, finally coupled together to give 
an overall state of the desired symmetry. For  O and F a third spin polarization 
configuration is included to treat the more than half-filled p shell, corresponding to 
a 2p ~ p* promotion, i.e., 

03 = I ls2 2s2 2P "-a IX]p ' l ,  (7) 

with a particular intermediate coupling of the n -  1 2p electrons given by 
IX] = {x /~[4S]  + [2D] - x/q5[zP]}/6 for O and IX] = {411S] + x/5[1D] 
- 3  [3p] } / x / ~  for F. The other two possible intermediate couplings of the 2p 

electrons are not included because the Hamiltonian and spin density matrix 
elements with 0o either vanish by construction or are quite small due to the fact 
that the ls, 2s, and 2p orbitals are close to the ROHF ones so that Brillouin's 
theorem is approximately satisfied [28]. 

Orbital polarization effects can be introduced through wavefunctions of the 
form 

0 SOP ~--- C000 "~ C101 -~- C21//2 ( "-~ C303) di- C404 -[- ¢505 (8) 

that augment the SP wavefunction discussed above with two additional singly 
excited configurations 04 and 05. For all the atoms these are the ls ~ d* and 
2s -~ d* promotions having triplet intermediate spin coupling of the unpaired s and 
d electrons, i.e., 

04 = [ l s d *  [3D] 2s 22p" [Y]I, (9) 

05 = [ ls22sd* [3D] 2p" [Y][, (10) 

where the appropriate intermediate recoupling of the 2p" electrons is [Y] = [2p] 
for B and F, [Y] = {x/213P] + x/~[XD]}/x/~ for C and O, and [Y] = [~D] for 
N. Note that the same d* polarization orbital is used for both the ls and 2s shells. 
In our earlier work [13] a distinct orthogonal d** orbital was used in 04 for ls 
polarization, and in that case 04 was found to play only a minor role in the 
wavefunction. However, a later reexamination [15] in which the possible non- 
orthogonality of d** and d* was considered showed that they indeed overlap 
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T a b l e  1. S p i n  d e n s i t i e s  o f  g r o u n d  s t a t e  f i r s t - r o w  a t o m s  f r o m  v a r i o u s  w a v e f u n c t i o n s  d e t e r m i n e d  n u m e r -  

ical ly .  All  r e su l t s  a r e  g i v e n  in a t o m i c  un i t s  

B o r o n  C a r b o n  N i t r o g e n  O x y g e n  F l u o r i n e  

R O H F  

L - -  0 .2469 - 0 .5385 - -  0 .9866  - -  1.5833 - -  2 .4017 

U 0 .4217  0 .8519 1,4887 2 .3157  3.4302 

V - 0.1811 - 0.3241 - 0 .5185 - 0 .7532 - -  1.0548 

qnSV(O)/N - 0 .0063 - 0 .0108 - -  0 .0164  - -  0 .0208 - -  0 .0263 

q6(O)/N 0 0 0 0 0 

S p i n  p o l a r i z a t i o n  

L - 0 .2509 - 0 .5462 - -  0 .9990  - -  1.6810 - 2 .5952 

U 0 .4305 0 .8827 1.5473 2 .4979 3.7517 

V - 0 .1869 - -  0 .3332  - -  0 .5312  - -  0 .7919 - -  1.1184 

qnSV(O)/N - -  0 .0073 0.0033 0.0171 0 .0250  0 .0382 

q'~(O)/N - -  0 .0076  0 .0027 0 .0162  0 .0224  0 .0334 

S p i n  + o r b i t a l  p o l a r i z a t i o n  

L - 0 .2509 - 0 .5407 - 0 .9879  - 1.6657 - -  2 .5800 

U 0 .4497 0 .8884 1.5399 2 .4859 3.7408 

V - 0 ,1880  - 0 .3323 - -  0 .5286  - -  0 .7886  - 1.1155 

qnSV(O)/N 0,0108 0 .0154 0 .0234  0 .0317 0.0453 

q6(O)/N 0,0096 0 .0138 0 .0214  0 .0279 0 .0392 

E x p e r i m e n t  a 0.0081 0.0173 0 .0324  0 .0569 0 .0717 

a B  e x p t  [30] ;  C e x p t  [31] ;  N e x p t  [32] ;  O e x p t  [33] ;  F e x p t  [ 3 3 ]  

considerably and that in fact a single common d* polarizing orbital, as considered 
here, is sufficient to treat the orbital polarization of both the ls and 2s shells. In that 
case, both ~P4 and ~P5 are significant contributors to the wavefunctions. The various 
other possible orbital polarization configurations that can be written but are 
omitted here have been shown by explicit numerical testing [13] to have only 
minor effects. 

In this work, all the orbitals ls, s**, 2s, s*, 2p, p*, and d*, along with the linear 
configuration interaction (CI) coefficients ci, are fully optimized through MCSCF 
calculations. All spin densities in this paper are obtained from expectation values, 
as in either Eq. (1) or Eq. (2), and are reported in atomic units. 

Numerical calculations 

Highly precise calculations of the wavefunctions described above were first carried 
out with Fisher's program [29] that is based on numerical grid methods. This 
obviates any questions about basis set completeness and allows for unambiguous 
evaluation of the inherent utility of the ROHF, SP and SOP wavefunctions for spin 
density determination. The numerical grid results for delta function and HSF spin 
densities of the first-row atoms are given in Table 1. 

Since the open-shell electrons are in p orbitals that have nodes at the nuclei, the 
delta function formulation gives exactly zero ROHF spin density for all the atoms 
considered here. However, the ROHF spin density need not be zero for HSF. The 
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individual L, U, and V contributions to qHSF(o)/N are in fact quite large. U 
is the largest and is consistently positive, while L and V are each a little smaller 
and are both consistently negative. Considerable cancellation occurs when these 
contributions are added together, to the extent that the net results are about two 
orders of magnitude smaller than the individual contributions. The final values of 
q"SV(O)/N are all opposite in sign and substantially smaller in magnitude 
than the positive experimental values. Clearly, at the R O H F  level neither delta 
function nor HSF results give a useful account of the experimental values for these 
atoms. 

With SP wavefunctions, the delta function results become nonzero but still 
considerably underestimate experiment. For  HSF, the individual L, U, and V con- 
tributions each become slightly larger in magnitude than with R O H F  wavefunc- 
tions and lead to positive net spin density values for all atoms except boron. The 
magnitudes are still significantly lower than experiment, although HSF values are 
generally better than delta function values. 

With SOP wavefunctions the delta function results become comparable to 
experiment, with boron being 19% too large and the other atoms ranging from 
27% to 51% too small. For  HSF, small further changes (some positive, some 
negative) in the individual L, U, and V contributions make all the net spin density 
values more positive. As with the delta function, the net HSF results are now 
comparable to experiment, with boron being 33% too large and the other atoms 
ranging from 18% to 44% too small. For all atoms except boron, the HSF results 
are closer than the delta function values to experiment. 

A common feature of these numerical grid results for different wavefunction 
models is very similar performance of the delta function and HSF approaches for 
spin densities. That is, the differences between results from the two formulations is 
generally much smaller than the deviations of either from experiment. Even so, 
with the larger SP and SOP wavefunctions the HSF results are usually slightly 
better than those from the delta function. 

Gaussian basis sets 

Spin polarization for carbon 

In this section we consider the utility of various contracted Gaussian basis sets for 
spin density determination. We have already considered above the inherent limit- 
ing performance of each wavefunction model in comparison to experiment. Here it 
is more illuminating to compare the basis set results to the corresponding numer- 
ical grid results obtained from the same wavefunction model, rather than to 
experiment. This allows us to more clearly judge the separate question of the 
relative performance of each basis set in comparison to the limiting values that 
could be obtained from a complete basis set. 

All basis set calculations were performed using the ALIS program [34]. 
We start with a detailed case study of the carbon atom using a wide variety of 

basis sets. Results with SP wavefunction, which only requires s and p functions, are 
given in Table 2. 

The smallest set, designated [4s2p] is the common (9s5p) primitive set of 
Huzinaga [35] as contracted to double zeta size by Dunning [36]. Compared to 
the corresponding numerical results (see the final column of Table 2), the delta 
function result is too large by about a factor of three. The HSF contributions are 
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Table 2. Spin density of ground state carbon atom from spin polarization wavefunctions with various 
Gaussian basis sets. All results are given in atomic units 

[4s2p] [6s3p] [6+s3+p] (lls7p) (13s9p)  (15s10p) Numerical 

L -0.5332 -0.5352 -0.5447 --0.5444 -0.5452 -0.5460 -0.5462 
U 0.8950 0.8800 0.8817 0.8825 0.8826 0.8826 0.8827 
V -0.3322 -0.3329 -0.3328 -0.3329 -0.3329 --0.3332 -0.3332 
qHSF(O)/N 0.0296 0.0119 0.0042 0.0052 0.0045 0.0034 0.0033 
qa(O)/N 0.0084 0.0012 0.0014 0.0036 0.0034 0.0019 0.0027 

somewhat too positive for L and U, while V is described quite well, leading to a net 
result that is too large by about  a factor of nine. 

In an earlier study utilizing the delta function [14], it was found that consider- 
able improvement could be obtained by uncontracting the outermost primitive 
s member  from the innermost contraction group, thereby allowing for a better 
description of the outer core-inner valence region spanned by the s** polarizing 
orbital. It was also necessary to add an uncontracted diffuse s function to allow for 
a better description of the outer valence region spanned by the s* polarizing 
orbital. A diffuse p function was also added, leading to the basis designated 
here as [6s3p]  [37]. With this basis, the delta function result is now too small by 
about a factor of two. The HSF contributions show a small improvement for L, 
a considerable improvement in U, and a slight improvement in the already 
good value for V, leading to a net result that is too large by about a factor 
of four. 

A strong inverse r dependence (r-3 for the L term and r-Z for the U term) 
makes the HSF operator very sensitive to the representation of the wavefunction 
near the nucleus, and of course the delta function operator  should also be sensitive 
to that region. Therefore tight, i.e., very high exponent, s and p functions were 
added to the basis, leading to the basis designated [6+s3+p] .  Here the dagger 
superscript indicates the addition of a tight primitive function that is contracted in 
with the existing innermost group from the previous [6s3p] basis. Details of the 
procedure used to obtain the values of the tight exponents are given in the 
Appendix II. The tight functions lead to only a small change in the delta function 
result, which is still too small by nearly a factor of two. The HSF contributions 
show a considerable improvement  in the value for L, which is attributed mainly to 
the effect of the tight p function, an improvement  in the already fairly good value 
for U, which is attributed mainly to the effect of the right's function, and no change 
in the value of V, leading to a net result that is now fairly good, being only 26% too 
large. However, this is due somewhat to an accidental cancellation of errors in the 
separate L and U contributions. 

At this stage, the effect of fully uncontracting the basis was examined, leading to 
the basis designated (l ls7p),  i.e., the (9s5p) Huzinaga basis with both diffuse and 
tight s and p functions added. This leads to a significant change in the delta 
function result, which is now too large by 33%. The HSF contributions show that 
L becomes slightly worse, U improves to nearly its converged value, and V changes 
only slightly. This leads to a net HSF result that is now not as good, being almost 
60% too large due to the disappearance of the previously noted accidental 
cancellation of errors. 



8 V, A. Rassolov, D, M. Chipman 

To investigate possibilities for the nature of the remaining errors, additional 
tighter and more diffuse s and p functions were added to the fully uncontracted 
basis, leading to the basis designated (13s9p), i.e., the (9s5p) Huzinaga basis with 
two diffuse and two tight s and p functions added [38]. This leads to a small change 
in the delta function result, which is now too large by 26%. The HSF contributions 
show a small improvement in L, with no change in either U or V. This leads to a net 
result that is now fairly good, being too large by 35%. 

Finally, a somewhat larger (13sSp) primitive basis due to van Duijneveldt [39] 
was considered. Compared to the (gs5p) basis on which the above studies were 
based, the innermost functions are significantly tighter, the outermost functions are 
comparable, and more functions are distributed between these limits. To this, 
additional very tight and diffuse s and p functions were added, leading to the fully 
uncontracted basis designated (15sl0p) [40]. This leads to a significant change in 
the delta function result, which is still not converged, being now too small by about 
30%. By contrast, the HSF contributions are now each separately nearly con- 
verged to their corresponding numerical values, as is the net result that is only 
slightly too large. 

These studies on the SP wavefunction show that the requirements on s and 
p basis functions needed to reach true convergence are very demanding. In fact, the 
delta function result has still not converged even with the largest basis considered. 
The HSF result, on the other hand, is well converged with the largest basis and 
shows reasonably smooth convergence behaviour with the various large bases 
considered. Interestingly, the various HSF contributions converge at different 
rates. The slowest convergence is shown by the L term, which is well described only 
in the largest basis considered here. The U term converges more rapidly and is 
already fairly well described in the [6÷s3 +p] basis. The V term, which is computa- 
tionally the most difficult to implement, converges very rapidly, being reasonably 
well described even in the smallest [4s2p] basis. 

Orbital polarization for carbon 

Inclusion of orbital polarization effects requires extension of the basis set into the 
d space. We again select the carbon atom for a detailed case study. The smallest 
basis considered above that provided semiquantitative results for the SP wavefunc- 
tion was [6+s3+p], and therefore that was selected as a starting point. Either one 
or two shells of d functions were added, with exponents taken from an earlier study 
[14], to produce the sets designated [6+s3+pld] and [6+s3+p2d], respectively. 
True five component spherical harmonic d functions were used throughout. Results 
with the SOP wavefunction are given in Table 3. 

As compared to the analogous numerical results, the delta function values are 
fairly good, being too small by 22% with one d function and by 11% with two 
d functions. The absolute error with two d shells is essentially the same as that 
found for the SP wavefunction with the [6+s3+p] basis. This suggests that the 
remaining error may be attributed mainly to the treatment of the spin polarization 
part of the wavefunction that is described by the sp part of the basis and that the 
orbital polarization effect is described quite well with just one d function and 
extremely well with two d functions. 

The HSF contributions are each consistently too large in magnitude, in con- 
trast to the SP wavefunction where they were consistently too small. With one 
d function the L and U terms show significant errors while the V term is given quite 
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Table 3. Spin dens i ty  of g round  s ta te  ca rbon  a t o m  from spin + orbi ta l  

po la r i za t ion  wavefunct ions  wi th  var ious  G a u s s i a n  basis  sets. All results  are 

given in a tomic  uni ts  

[6 +s3 +p l d ]  [6 +s3 +p2d]  Numer i ca l  

L - 0.5468 -- 0.5452 -- 0.5407 

U 0.8935 0.8925 0.8884 

V - 0.3334 -- 0.3330 -- 0.3323 
qHSV(O)/N 0.0133 0.0144 0.0154 

q~(O)/N 0.0107 0.0125 0.0138 

Table 4. Spin densi t ies  of g round  s ta te  f i rs t - row a toms  from spin po la r i za t ion  wavefunct ions  deter-  

mined  wi th  the [6 +s3 +p] basis set. All results  are given in a tomic  units.  The relat ive e r ror  of each result, 

as c o m p a r e d  to the cor responding  l imi t ing  numer ica l  gr id  result,  is indica ted  in parentheses  

Boron C a r b o n  Ni t rogen  Oxygen  F luor ine  

L - 0.2499 - 0.5447 -- 0.9970 -- 1.6936 - 2.6248 

( - 0.41%) ( -- 0 .26%) ( - 0 .20%) (0.75%) (1.14%) 

U 0.4298 0.8817 1.5453 2.5058 3.7751 

( - - 0 . 1 6 % )  ( - 0 . 1 1 % )  ( - - 0 . 1 3 % )  (0.32%) (0.62%) 

V - 0.1866 - 0.3328 - 0.5307 - 0.7927 -- 1.1211 

( - 0 . 1 7 % )  ( - 0 . 1 1 % )  ( - - 0 . 1 0 % )  (0.11%) (0.25%) 

qHSF(O)/N -- 0.0066 0.0042 0.0176 0.0195 -- 0.0292 

( -- 8.9%) (26%) (2.8%) ( -- 28%) ( -- 23%)  

qa(O)/N -- 0.0081 0.0014 -- 0.0130 0.0153 0.0239 
(6.6%) ( -- 47%)  ( -- 20%)  ( -- 32%) ( -- 40%)  

well. Due to an accidental cancellation of errors from the separate L and U terms, 
the net result is quite good, being just 14% too small. With two d functions there is 
a small improvement  in the L term and even smaller improvements in the U and 
V terms. Significant accidental cancellation of errors from the separate L and 
U terms remains so that the net result is again quite good, being just 7% too small. 
We have observed similar behavior in test calculations on boron and nitrogen, 
suggesting that such a cancellation of errors is consistent with this basis set. 

Results for first-row atoms 

The [6+s3+p]  basis set was selected to examine the behavior of the various 
first-row atoms with spin polarization wavefunctions. Results are presented in 
Table 4, which also lists the percent error of each result as compared to the 
corresponding limiting numerical result. 

The delta function values range from being 47% too low to 7% too high. 
The HSF values are slightly too small in magnitude for B, C, and N and are slightly 
too large in magnitude for O and F. The errors are largest for the L terms. As 
already discussed above in connection with carbon, there are significant error 
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Table 5. Spin densities of ground state first-row atoms from spin + orbital polarization wavefunctions 
determined with the [6+s3+pldl basis set. The relative error of each result, as compared to the 
corresponding limiting numerical grid result, is indicated in parentheses 

Boron Carbon Nitrogen Oxygen Fluorine 

L - 0.2556 - 0.5468 -- 0.9944 - 1.6872 - 2.6190 
(1.86%) (1.12%) (0.65%) (1.29%) (1.51%) 

U 0.4541 0.8935 1.5447 2.5011 3.7714 
(0.99%) (0.57%) (0.32%) (0.61%) (0.82%) 

V - 0.1892 - 0.3334 - 0.5295 - 0.7907 - 1.1192 
(0.61%) (0.35%) (0.17%) (0.26%) (0.33%) 

qnSV(O)/N 0.0094 0.0133 0.0209 0.0233 0.0332 
( -  13%) ( -  14%) ( -  11%) ( -  27%) (--27%) 

q~(O)/N 0.0082 0.0017 0.0160 0.0185 -- 0.0270 
( -14%)  ( -22%)  ( - 2 5 % )  ( -33%)  ( - 3 1 % )  

cancel la t ions,  par t i cu la r ly  between the L and U contr ibut ions ,  to  p roduce  net 
results  that  range from being 28% too  low to 26% too  high. The  net result  for 
n i t rogen  is accidental ly  extremely good.  W i t h  the except ion of boron ,  the H S F  
results  are closer to  their  l imit ing numer ica l  values than  are the del ta  funct ion 
results.  

The  [6--s3 +p l d]  basis set was selected to examine the behav ior  of the var ious  
f i rs t-row a toms  with spin + orb i ta l  po la r i za t ion  wavefunctions.  Results  are pre-  
sented in Table  5, which again  lists the percent  e r ror  of each result  as c o m p a r e d  to 
the cor respond ing  numer ica l  result. 

The  delta funct ion values are all too  smal l  in magni tude ,  with errors  ranging  
f rom 14% to 33%. The H S F  values are sl ightly too  large in magni tude ,  with the 
largest  errors  again  occurr ing  in the L terms.  And  again  there are significant e r ror  
cancel la t ions  between the L and U con t r ibu t ions  to p roduce  net  results  having 
errors  ranging from 1 1 % - 2 7 % ,  all consis tent ly  too  low. The H S F  results  are bet ter  
converged  than  the del ta  function ones for every atom. The  cancel la t ion  of H S F  
er rors  is thus even more  sys temat ic  than  in the case of the SP wavefunction.  

Conclusions 

The numer ica l  grid calcula t ions  demons t r a t e  tha t  the del ta  funct ion and H S F  
ope ra to r s  give c o m p a r a b l e  results for the exact  SP and S O P  wavefunct ions,  with 
H S F  usual ly being sl ightly better.  The S O P  results  are in semi-quant i ta t ive  agree- 
ment  with experiment .  

C o m p a r i s o n  of the numer ica l  results with calcula t ions  uti l izing G a u s s i a n  basis 
sets shows several no tab le  features. The  de l ta  funct ion results  converge  slowly with 
basis  set extension,  and  in fact are still no t  converged even with the largest  basis 
sets considered here. By compar i son ,  the H S F  net results converge to their  l imi t ing 
values significantly more  rapidly.  

The  most  compu ta t i ona l l y  intensive con t r ibu t ion  to the H S F  result  comes f rom 
the two-elec t ron V term. For tuna te ly ,  this t e rm converges very rapidly ,  being given 
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quite well even with rather small basis sets. This observation suggests the possi- 
bility of an efficient hybrid computat ional  procedure that uses a relatively small 
basis set for evaluation of the difficult V term together with a larger basis set 
for the easier one-electron L and U terms. 

Common double zeta basis sets require augmentation by diffuse functions and 
some uncontraction of the innermost s group in order to describe the spin 
polarization orbitals adequately. Due to the strong dependence of the L and 
U terms in the HSF operator on inverse powers of r, it is also necessary to extend 
common primitive Gaussian basis sets with tight functions. One set of tight s 
(for U) and tight p (for L) functions contracted into the existing innermost groups, 
as for example in the [6+s3+pld] basis considered here, seems to be enough to 
produce reasonable results. This arises in part from some error cancellation 
between the separate L and U contributions, which actually require fairly large 
basis sets for true convergence. This accidental cancellation appears to be system- 
atic throughout the first-row atoms. Since the cancellation occurs from inner region 
contributions which are likely to be insensitive to the effects of chemical bonding, it is 
possible that it will also systematically occur in polyatomic systems as well. 

In conclusion, this work shows that the HSF formulation has some significant 
advantage over the traditional delta function approach for spin density calculation 
by allowing for the use of smaller basis sets to achieve satisfactory accuracy. 
Additional studies on polyatomic systems are in progress to investigate this topic 
further. 
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partment of Energy. This is Contribution No. NDRL-3716 of the Notre Dame Radiation Laboratory. 

Appendix I 

The derivation of the HSF relation is based on the hypervirial theorem [41] 

(#s[ [H, W ] I~)  = 0, (A1) 

where [H, W] is the commuta tor  of some operator W with the Hamiltonian of 
the system for which ~ is an exact eigenfunction. We show here that for any 
one-electron operator  W the hypervirial theorem is true not only for the exact 
wavefunction, but also for any unrestricted MCSCF wavefunction obtained within 
a complete basis set. 

For  simplicity assume the wavefunction ~ to be real. Then Eq. (A1) can be 
rewritten as 

<~bIH(W - ff~)l~,> = o, (A2) 

where W is the transpose operator to W, i.e., the complex conjugate of the 
Hermitian adjoint to W, or (W +)*. It is convenient to use the second quantization 
notation, in which any one-electron operator  W can be expressed as 

W = Z Cpqa~ aq, (A3) 

where Cpq are the coefficients in the expansion of W through the creation and 
annihilation operators a + and aq acting on spin-orbitals. Then Eq. (A2) becomes 

Z Cpq (@lH(a + a q  - -  a + ap)]~) = 0 (A4) 
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which is satisfied because every term in the sum vanishes due to the generalized 
Brillouin theorem that holds for an unrestricted MCSCF wavefunction [42]. In 
other words, the variational principle makes an unrestricted MCSCF wavefunction 

stable to first order against all single excitations that preserve orbital orthonor- 
mality to first order. In particular, it will then be stable to the variation (W - ff ' )~ 
when W is a one-electron operator. 

Often a restriction is applied to the wavefunction that can be expressed in the 
form of an operator (representing some constant of the motion) that commutes 
with H, e.g., an angular momentum operator. The above hypervirial theorem is still 
satisfied in such a restricted MCSCF procedure if the operator representing 
the restriction also commutes with (W - I~). 

The equivalence of delta function and HSF results for an unrestricted MCSCF 
wavefunction is now obtained by the specific choice of the nonhermitian operator 
W = y O/c3ri (for total electronic density) or W = Y s~ic3/c~ri (for spin density), 
where summation is carried over all electrons, as in the original HSF derivations 
[1-3].  

In  the more common situation of a spin-restricted MCSCF procedure, the 
generalized Brillouin theorem contains variations with respect to spatial orbitals 
only [43]. In this case, Eq. (A4) will still be valid if W is a spin-free one-electron 
operator and, therefore, can be represented through creation and annihilation 
operators acting in the space spanned by spatial orbitals, similar to Eq. (A3). 
Consequently, the delta function and HSF total electronic densities will agree with 
one another in both spin-restricted and spin-unrestricted MCSCF wavefunctions, 
including UHF  and ROHF.  

On the other hand, the generalized Brillouin theorem appropriate for a spin- 
restricted MCSCF procedure is not strong enough for the above proof to work for 
the spin-dependent operator W = Y" s~i ~?/c~ri, because this does not commute with 
S a. Thus, while delta function and HSF spin densities will still agree for spin- 
unrestricted MCSCF wavefunctions (including UHF), they may differ from one 
another for spin-restricted MCSCF wavefunctions (such as ROHF). 

B e c a u s e  L 2 commutes with both H and (W - I~), constraining the wavefunc- 
tions in the present study to be eigenfunctions of L z does not affect our proofs 
regarding the relationships between delta function and HSF densities at the 
nucleus. 

Finally, it should be emphasized that the proofs given in this appendix apply 
only to exact MCSCF wavefunctions, i.e., obtained either within a complete basis 
set or by essentially exact numerical methods. This is required to ensure that 
(W - IV)O lies within the space spanned by the basis set. 

Appendix II 

In order to optimize the values of the tight Gaussian exponents, simple model 
calculations were performed. The single Slater s type function exp( - Zr), which 
has a cusp at the nucleus, was selected as a standard. This was approximated with 
the original primitive (9s) Gaussian basis of Huzinaga plus one added tight 
s function. The value of the tight exponent as well as the expansion coefficients of 
all the primitive Gaussian functions were least squares optimized in calculations of 
average values of operators having the form r - "  (1 ~< n ~ 3). That  is, the integral 

f o [exp(  - Zr)  - Ct exp(  - °~d'2) - ~ Ci exp(  - °~ir2)]zr- 'rz 
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Boron Carbon Nitrogen 

Exp Coefficient Exp Coefficient Exp Coefficient 

24805. 0.00016525 37721. 0.00015918 52630. 0.00015744 
2788.41 0.0022700 4232.61 0.0021940 5909.44 0.0021675 
419.039 0.0186417 634.882 0.0180604 887.451 0.0178182 

s 96.4683 0.089462 146.097 0.087043 204.749 0.085615 
28.0694 0.301214 42.4974 0.296851 59.8376 0.292595 

9.3760 0.682240 14.1892 0.688199 19.9981 0.693037 
3.4062 1.0 5.1477 1.0 7.1927 1.0 
1.3057 1.0 1.9666 1.0 2.6860 1.0 
0.3245 1.0 0.4962 1.0 0.7000 1.0 
0.1022 1.0 0.1533 1.0 0.2133 1.0 
0.033 1.0 0.0479 1.0 0.0667 1.0 

64.4 0.0012133 103.3 0.0012020 1 5 2 . 0  0.0011631 
11.3413 0.017156 18.1557 0.017683 26.7860 0.017408 

p 2.4360 0.111078 3.9864 0.116138 5.9564 0.117093 
0.6836 0.381319 1.1429 0.383982 1.7074 0.387782 
0.2134 0.649276 0.3594 0.641956 0.5314 0.639200 
0.0701 1.0 0.1146 1.0 0.1654 1.0 
0.0226 1.0 0.0358 1.0 0.0517 1.0 

d 0.32 1.0 0.51 1.0 0.73 1.0 

Oxygen Fluoride 

Exp Coefficient Exp Coefficient 

69560. 0.00015826 88860. 0.00015751 
7816.54 0.0021757 9994.79 0.0021615 
1175.82 0.0178341 1506 .03  0.0176803 
273.188 0.084419 350.269 0.083746 

81.1696 0.284028 104.053 0.282894 
27.1836 0.701313 34.8432 0.702877 

s 9.5322 1.0 12.2164 1.0 
3.4136 1.0 4.3688 1.0 
0.9398 1.0 1.2078 1.0 
0.2846 t.0 0.3634 1.0 
0.0862 1.0 0.1101 1.0 

1 9 9 . 6  0.0012348 251.4 0.0013074 
35.1832 0.018658 44.3555 0.019820 
7.9040 0.124885 10.0820 0.130751 

p 2.3051 0.391806 2.9959 0.395739 
0.7171 0.629950 0.9383 0.620612 
0.2137 1.0 0.2733 1.0 
0.0648 1.0 0.0828 1.0 

d 1.01 1.0 1.33 1.0 
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was minimized with respect to ~t and Ct (the exponent and coefficient of the added 
tight function), and all the C~ (the coefficients of the functions from the original 
Huzinaga  basis). In  a similar manner,  the radial dependence of the single Slater 
p type function rexp(  - Zr/2) was approximated with the original primitive (5p) 
Gaussian basis of Huzinaga  plus one added tight p function. 

It turns out  that  the optimized values of the tight exponents ~, are nearly 
the same, within 10%, regardless of the value of n considered. This implies that  
the tight exponent  which is best suited for improvement  of  the total energy of 
the system (as represented by n = 1) is also nearly optimal for the one electron 
terms in the H S F  density (as represented by n = 2 or 3). Even so, the improvement  
of the H S F  value is much greater than for the energy. Fo r  example, in ca rbon  a tom 
SP calculations the difference in total energies between the [6s3p]  and [6+s3 +p] 
sets corresponds to a relative change of just 0.003%, while the difference in 
L contributions to the H S F  result corresponds to a much larger relative change 
of 2%. 

The values of the tight functions found in this manner  are given in Table 6. For  
reference, the full specifications for the [6+s3 +p l d]  bases that  are emphasized in 
this work are also given there. The contract ion coefficients were determined in the 
usual way by carrying out R O H F  calculations with the fully uncontrac ted  basis, 
taking relative weights from their coefficients in the ls  or  2p orbital, and renor-  
realizing. Note  that the addit ion of  primitive tight functions to the basis set in this 
manner  does not  make the wavefunction calculations significantly longer, because 
the number  of contracted functions remains unchanged.  

It is interesting to note some regularities in the values of the tight exponents 
that were determined. The ratio of the added tight exponent  to the highest 
exponent f rom the original Huz inaga  basis is 8.90 +_ 0.01 for s and 5.68 + 0.01 for 
p in all five atoms. A similar regularity may be seen in the ratio of the two largest 
exponents in the original Huz inaga  basis sets. 
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